Đề bài sai rồi bạn
Muốn HK song song BD thì H, K phải là hình chiếu của A lên SB và SD
Đề bài sai rồi bạn
Muốn HK song song BD thì H, K phải là hình chiếu của A lên SB và SD
cho hình chóp S.ABCD có đáy là hình vuông ABCD tâm O, SA vuông góc với đáy ABCD. H,K lần lượt là hình chiếu vuông góc của A trên SB, SD.
1, cminh HK song song BD.
2, từ A hạ AI vuông SC. Chứng minh I thuộc mp (AHK) và HK vuông góc với mp(SAC).
Cho chóp S.ABCD đáy là hình chữ nhật. SA vuông góc đáy, SA=a√5;AD=2AB=4a.
a, Chứng minh BC vuông góc với mp (SAB).
b, Tính (SB;(ABCD).
(SC;(ABCD).
(SD;ABCD).
Cho hình chóp S.ABC có SA vuông góc với đáy, SA=2a, SA vuông góc với đáy, gọi H, K lần lượt là hình chiếu vuông góc của A trên SB, SC; biết tam giác ABC đều cạnh a. Xác định góc giữa các mặt phẳng : (SBC) và (SAC)
Cho hình chóp S.ABCD có SA vuông góc với mp đáy (ABCD) và ABCD là hình thang vuông tại A, đáy lớn AB, AB=2a, AD=CD=a. Gọi H là hình chiếu vuông góc của A lên SC và E là trung điểm của AB
a, CMR: (SCD) ⊥(SAD) và AH ⊥(SBC)
b, Biết góc giữa 2 mp (SCD) và (ABCD) bằng 300. Tính góc giữa 2 mp (SAD) và (SCE)?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA vuông góc với đáy và SA=3a. Gọi M,N lần lượt là hình chiếu của A trên SB,SD.
a, Cmr: SC vuông góc với mpAMN
b, Tính chu vi tam giác AMN
Mn giải giúp em với ạ
Cho hình chóp S.ABCD có SA vuông góc với mp đáy (ABCD) và ABCD là hình thang vuông tại A, đáy lớn AB, AB=2a, AD=CD=a. Gọi H là hình chiếu vuông góc của A lên SC và E là trung điểm của AB
a, CMR: (SCD) \(\perp\)(SAD) và AH \(\perp\)(SBC)
b, Biết góc giữa 2 mp (SCD) và (ABCD) bằng 300. Tính góc giữa 2 mp (SAD) và (SCE)?
\( Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, SA vuông góc với đáy (ABCD), SA=aV3, ABC = 60° a) Chứng minh BD vuông góc với mặt phẳng (SAC). c) Tính góc giữa SC với mặt phẳng (ABCD).\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = . Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a tâm O,SA vuông (ABCD) và SA=a√6 a)tính khoảng cách từ A đến mp (SBC) b) tính góc giữa đường thẳng SC và mp (ABCD)