Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB= a, AD= 2a. Cạnh SA vuông góc với đáy. Cạnh bên SC tạo với đáy góc α thỏa mãn tan α= \(\sqrt{\frac{2}{5}}\). Gọi M là trung điểm BC, N là giao điểm của DM và AC, H là hình chiếu của A lên SB. Tính thể tích chóp S.ABMN và khoảng cách từ H đến mặt phẳng (SDM)
Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = 2Bc=2a, AD= 3a. Hình chiếu vuông góc H của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tichs khối chốp S.ABCD. và khoảng cách tù A đến mặt phẳng (SAD) biết SD = a căn 3.
Cho hình chóp sabcd đáy là hình vuông cạnh a hình chiếu của S lên đáy trùng với trọng tâm H của tam giác ABD ,SH=4a:3. Gọi I là hình chiếu của H lên SC.Tính khoảng cách từ I đến (SAB)
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, canh bên SA,SB,SC đều tạo với đáy 1 góc 600.Tính thể tích của khối chóp S.ABC và khoảng cách từ điểm A đến mặt phẳng (SBC).
Câu 1: Cho hình chóp đều S.ABCD, đáy có cạnh bằng 2a, cạnh bên SA = a\(\sqrt{5}\). Tính khoảng cách giữa BD và SC
Câu 2: Cho hình chóp đều S.ABCD, đáy có cạnh bằng a, cạnh bên SA = 2a. Tính khoảng cách giữa BC và SA
cho lăng trụ abc.a'b'c' có đáy là tam giác vuông abc có AB=BC=a góc giữa A'B và ACC'A' = 30 độ.M là trung điểm của A'B'.tính thể tích lăng trụ và khoảng cách từ M đến mặt phẳng A'BC
Cho em hỏi bài này ạ. Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD. Điểm E (2, 3) thuộc BD. Các điểm H (-2, 3) và K (-2,4) lần lượt là hình chiều vuông góc của điểm E trên AB và AD. Xác định tọa độ các đỉnh của hình vuông ABCD
Cho khối chóp S.ABC có \(SA=2a;SB=3a;SC=4a;\widehat{ASB\:}=\widehat{SAC}=90^0,\widehat{BSC}=120^0\). Gọi M, N lần lượt trên các đoạn SB và SC sao cho SM=SN=2a. Chứng minh tam giác AMN vuông. Tính thể tích và khoảng cách từ điểm C đến mặt phẳng (SAB) theo a
cho hình chóp S.ABC có đáy ABC đều cạnh a, tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với (ABC) tính thể tích khối chóp S.ABC.