Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)
Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)
a) Hãy xác định điểm L
b) Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD
a) Hãy xác định giao tuyến của hai mặt phẳng (IJM) và (ACD)
b) Lấy N là điểm thuộc miền trong của tam giác ABD sao cho JN cắt đoạn AB tại L. Tìm giao tuyến của hai mặt phẳng (MNJ) và (ABC)
Cho tứ giác ABCD nằm trong mặt phẳng \(\left(\alpha\right)\) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng \(\left(\alpha\right)\) và M là trung điểm đoạn SC
a) Tìm giao điềm N của đường thẳng SD và mặt phẳng (MAB) ?
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy ?
Câu 1: Cho hình chóp S.ABCD đáy là hình bình hành ABCD.Gọi M,N,P lần lượt là trung điểm của AB,AD,SC. Tìm giao điểm của mặt phẳng (MNP) với các cạnh của hình chóp và giao tuyến của mặt phẳng (MNP) với các mặt phẳng của hình chóp.
Câu 2: cho hình chiếu SABCD có đáy là hình bình hành tâm o gọi M là trung điểm của cạnh BC,N là điểm thuộc SB, K là 1 điểm trên đoạn AC. Tìm giao tuyến của mặt phẳng MNK với tất cả các mặt của hình chóp
Cho hình chóp S ABCD có đáy ABCD là hình bình hành. N là trung điểm của SB, M là một điểm nằm trên cạnh SC sao cho MC=2SM:
a, Tìm giao điểm của SB, SD và (AMN)
b, Tìm E và AM giao (SBD)
c, Tìm P và SD giao (AMN)
d, Hãy tìm các đoạn giao tuyến của (AMN) với các mặt của hình chóp.
Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt AB tại E, tia phân giác của góc AMC cắt AC tại D.
a)So sánh AE/EB và AD/DC
b)Gọi I là giao điểm của AM và ED. Chứng minh I là trung điểm ED.
c)Cho BC = 16 cm, CD/DA = 3/5. Tính ED
d)Gọi F, K lần lượt là giao điểm EC với AM, DM. Chứng minh EF.KC = FK.EC
Cho hình chóp S.ABCD, có ABCD là hình thang:AB song song với CD. Gọi I là giao điểm của AD và BC. Điểm M thuộc SC. Tìm giao tuyến của: (ADM) và (SBC)
Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của hai mặt phẳng :
a) (SBM) và (SCD)
b) (ABM) và (SCD)
c) (ABM) và (SAC)