Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD).
a, Vì tam giác SAD là tam giác vuông cân
\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)
\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)
\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)
b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN.
Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)
\(\Rightarrow MH\perp BC\)
mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)
Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc)
Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)