Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thị Hoài Linh

Cho hình chóp S.ABCD có đáy ABCD là hình thang, \(\widehat{BAD}=\widehat{ABC}=90^o;AB=BC=a;AD=2a\), SA vuông góc với đáy và SA=2a. Gọi M, N lần lượt là trung điểm của SA và SD. Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp S.BCNM theo a

Thiên An
2 tháng 4 2016 lúc 15:11

S B C D A M N

Ta có : MN là đường trung bình của tam giác SAD

Suy ra MN song song với AD và \(MN=\frac{1}{2}AD\Rightarrow\begin{cases}MN||BC\\MN=BC\end{cases}\)\(\Rightarrow\) BCNM là hình bình hành (1)

Mặt khác 

\(\begin{cases}BC\perp AB\\BC\perp SA\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp BM\left(2\right)\)

Từ (1) và (2) ra suy ra BCNM là hình chữ nhật

Ta có :

\(S_{BCNM}=2S_{\Delta BCM}\Rightarrow V_{S.BCNM}=2V_{S.BCM}\)

\(V_{S.BCM}=V_{C.SBM}=\frac{1}{3}CB.S_{\Delta SBM}=\frac{1}{6}CB.S_{\Delta SAB}=\frac{1}{6}CB.\frac{1}{2}SA.AB=\frac{a^3}{6}\)

Vậy \(V_{S.BCNM}=\frac{a^3}{3}\)


Các câu hỏi tương tự
Ngô Võ Thùy Nhung
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Cẩm Tú
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Trung Sơn
Xem chi tiết
Đỗ Phương Nam
Xem chi tiết
Nguyễn Mai Khánh Huyề...
Xem chi tiết
Ngọc Hưng
Xem chi tiết
Dao Nguyen
Xem chi tiết