Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , AB=BC=a, AD=2a. Cạnh bên SA vuông góc với mặt phẳng (ABCD) , góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ .Tính theo a thể tích của khối chóp A.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hình chiếu của đỉnh S lên mặt phẳng (ABCD) trùng với giao điểm I của AC và BD. Mặt bên (SAB) hợp với đáy một góc \(60^0\). Biết rằng \(AB=BC=a;AD=3a\). Tính thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (SAB) theo a.
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Tma giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Biết SD = \(2a\sqrt{3}\) và góc tạ bởi SC và mặt phẳng (ABCD) bằng 30o . Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ B đến mặt phẳng (SAC)
Chóp s.abcd đáy hình thang vuông tại a và d..ad=cd=a, ab=3a.cạnh bên sa vuông với mặt phẳng đáy và sc tạo với ặt phẳng đáy một góc 45° tính thể tích khối chópvà khoảng cách từ ab đến sc theo a
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, góc BAD=120. Mặt bên (SAB) có SA=a, SB= a\(\sqrt{3}\) và vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SCD. Tính thể tích hình chóp SABCD và khoảng cách từ G đến mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hính thang vuông tại A và B AB=BC=a , SA =a và vuông góc với mặt phẳng (ABCD) .Khoảng cách từ D đến mặt phẳng (SAC) bằng a√2. Tính thể tích V S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SO vuông góc với mặt phẳng đáy, mặt bên (SAB) là tam giác đều cạnh a và hợp với đáy 1 góc 450. Gọi M, N lần lượt là trung điểm của AB và AD. Tính thể tích khối chóp S.ABCD và khoảng cách giữa SM và NC
cho hình chóp s abcd có đáy abcd là hình chữ nhật ab=2bc=2a tam giác sab là tam giác cân ở s và nằm trong mặt phẳng vuông góc với đáy .biết góc hợp bởi sa với mp abcd = 60độ.tính thể tích khối chóp s.abcd