Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, \(AB//CD\) và \(AB = BC = DA = a\), \(CD = 2a\). Biết hai mặt phẳng \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = a\sqrt 2 \). Tính theo \(a\) khoảng cách từ \(S\) đến mặt phẳng \((ABCD)\) và thể tích của khối chóp S.ABCD.
Xét mặt phẳng đáy (ABCD) là hình thang cân. Kéo dài AC cắt BD tại I ta thu được tam giác đều ICD.
Do đó AD và BC đồng thời là đường cao và là đường trung tuyến của tam giác ICD. Suy ra O là trọng tâm của tam giác ICD (Với O là giao của AD và BC)
Ta có: \(AD=\sqrt{CD^2-AC^2}=a\sqrt{3}\)
\(\Rightarrow OA=\dfrac{1}{3}a\sqrt{3}\)
Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và có giao tuyến là SO. Do đó SO vuông góc với (ABCD)
Xét tam giác SOB vuông tại O ta có:
\(SO=\sqrt{SA^2-OA^2}=\dfrac{\sqrt{15}}{3}a\)
Vậy khoảng cách từ S đến mặt phẳng (ABCD) là \(\dfrac{\sqrt{15}}{3}a\)
Ta có: \(S_{ABCD}=\dfrac{3}{4}.S_{ICD}=\dfrac{3}{4}.\dfrac{AD.CI}{2}=\dfrac{3}{8}.a\sqrt{3}.2a=\dfrac{3\sqrt{3}}{4}a^2\)
\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{\sqrt{15}}{3}a.\dfrac{3\sqrt{3}}{4}a^2=\dfrac{\sqrt{5}}{4}a^3\)