Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(BD=2a\), tam gicacs SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. \(SC=a\sqrt{3}\). Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAD)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a. SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, cạnh AC = a. Tính \(\alpha\) theo thể tích khối S.ABCD và khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SD=\frac{3a}{2}\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp s.ABCD và khoảng cách từ A đến mặt phẳng (SBD)
Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB=AD=2a. CD=a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=a; hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là điểm H thuộc đoạn AC, \(AH=\frac{AC}{4}\). Gọi CM là đường cao của tam giác SAC.
Chứng minh M là trung điểm của SA và tính thể tích của khối tứ diệm SMBC theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA (ABCD), SA = a 3 , gọi H, K lần lượt là chân đường cao hạ từ A của SAB và SAD, SC = 2a. a. CMR: Các mặt bên của hc là các tam giác vuông b. CMR: SC (AHK) c. Tính thể tích S.ABCD d. Tính d(O, (SBC))
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB=a,BC=2a\sqrt{a}\). Hình chiếu của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBC)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, góc ACB = 30 độ. Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH = \(\sqrt{2}a\). Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)