Cho hình chóp tứ giác đều SABCD có đáy ABCD là hình vuông cạnh bằng a, mặt bên hợp với mặt đáy góc 60 độ. Gọi M,N là trung điểm các cạnh AB và SD. Tính theo a thể tích của khối chóp SABCD và khoảng cách giữa MN,CD.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. hình chiếu của S lên (ABCD) trùng với trung điểm M của cạnh AB. Biết SA=a\(\sqrt{2}\) , AC=2a, SM=\(\frac{a\sqrt{5}}{2}\) . Tính VS.ABCD và d(SM,AC)
Cho hình chóp S.ABC có SA vuông góc với mp (SBC), SB vuông góc SC; biết SA=3cm, SB=4cm, SC=5cm
a)tính thể tích khối chóp S.ABC
b)Tính khoảng cách từ điểm S đến mp (ABC)
Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AB=3a AD =2a , SA vuông góc ( ABCD) . Gọi M là trung điểm của AD. Khoảng cách giữa 2 đường thẳng CM và SA là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, \(\widehat{BAD}=\widehat{ABC}=90^o;AB=BC=a;AD=2a\), SA vuông góc với đáy và SA=2a. Gọi M, N lần lượt là trung điểm của SA và SD. Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp S.BCNM theo a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB=a,BC=2a\sqrt{a}\). Hình chiếu của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.
Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB=AD=2a. CD=a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật. AB=2a, AD= a√3 , SA vuông góc với đáy (ABCD). Gọi M là trung điểm CD. Góc giữa SM và đáy (ABCD) là 60 độ. Tính khoảng cách giữa hai đường thẳng AM và SB.