Mặt phẳng (P) qua A song song với BD nên (P) sẽ cắt (ABCD) theo giao tuyến d đi qua A và song song với BD. A và BD cố định nên d cố đinh
Mặt phẳng (P) qua A song song với BD nên (P) sẽ cắt (ABCD) theo giao tuyến d đi qua A và song song với BD. A và BD cố định nên d cố đinh
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Mặt phẳng (P) cắt SB, SD lần lượt tại E và FF. Hãy xác định các điểm E, F ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Gọi I, J lần lượt là giao điểm của ME với CB và MF với CD. Chứng minh ba điểm I, A, J thẳng hàng ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD
Xác định giao điểm N của SC và mặt phẳng (ABM). Tứ giác ABNM là hình gì ? Có thể là hình bình hành không ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD
Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB song song CD). Gọi G là trọng tâm của tam giác SCD. a) Tìm giao tuyến của hai mặt phẳng SCD và mặt phẳng GAB. b) Gọi M là điểm thuộc cạnh AC, sao cho AM = 2 MC. Chứng minh rằng MG song song (SAB) Giúp em bài này là cứu vớt con điểm Toán cuối kì đấy ạaaaaa :(((
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy M trên cạnh SA sao cho MA=2MS và N trên cạnh BC sao cho NB=2NC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (MBN).
b) Chứng minh: MN//(SCD)
c) Tìm giao điểm P của (MNO) với SB. Tính tỉ số diện tích: S(∆SCP)/S(∆SBC).
Cho hình chóp tứ giác S.ABCD \(\)có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SC. Gọi I là giao điểm của đường thẳng AM với mặt phẳng (SBD). Khi đó tỉ số \(\dfrac{MA}{IA}\) bằng bao nhiêu?
A. \(\dfrac{4}{3}\)
B. 3
C. 2
D. \(\dfrac{3}{2}\)