ta có \(AN\cap QC\) ={E} (AN,QC⊂(ABC))
Mà AN ⊂ (AMN) ,QC ⊂ (QCP)
=>E∈(AMN)và(QCP)(1)
ta có \(PC\cap AM\) ={F} (PC, AM⊂(SAC))
Mà PC ⊂ (QCP) , AM⊂(AMN)
=>F∈(AMN)và(QPC)(2)
Từ (1) và(2) ta có:
EF⊂ \(\left(AMN\right)\cap\left(QCP\right)\)
ta có \(AN\cap QC\) ={E} (AN,QC⊂(ABC))
Mà AN ⊂ (AMN) ,QC ⊂ (QCP)
=>E∈(AMN)và(QCP)(1)
ta có \(PC\cap AM\) ={F} (PC, AM⊂(SAC))
Mà PC ⊂ (QCP) , AM⊂(AMN)
=>F∈(AMN)và(QPC)(2)
Từ (1) và(2) ta có:
EF⊂ \(\left(AMN\right)\cap\left(QCP\right)\)
Cho hình Chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD
a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SAB), (SAB)và (SCD)
b. Trên SC lấy điểm M tùy ý. Tìm giao điểm K của SD và mp (ABM)
c. Tìm thiết diện của hình chóp với mặt phẳng (ABM)
giúp mình với
BT1:Cho hình chóp S.ABC,gọi M,N laanf lượt là trung điểm SC,AB.
1,Xác định giao tuyến của 2 mặt phẳng (MAB) và (NSC)
2,Gọi I,J là 2 điểm lần lượt nằm trên 2 cạnh SA và SB.Xác định giao tuyến của 2 mặt phẳng (MAB) và (IJC)
BT2:Cho tứ diện ABCD,gọi I,J lần lượt là trung điểm của AC và SB,K\(\in\)BD sao cho KD<KB.Tìm giao tuyến của 2 mặt phẳng:
1,(IJK) và (ACD)
2,(IJK) và (ABD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Gọi M,N lần lượt là trung điểm của SA và CD. Hãy tìm :
1) Giao tuyến của hai mặt phẳng ( BMN ) và ( SAD )
2) Giao điểm của đường thẳng SC và (BMN)
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD , M và N lần lượt là trung điểm của SA và SC. Tìm giao tuyến của mặt phẳng (SBN) Và mặt phẳng (SDM) .
Cho hình chóp SABCD có đáy ABCD là hình thang, đáy lớn là AD. Gọi M,N,P lần lượt là trung điểm của AB,SA,SD.
a. Tìm giao tuyến của 2 mp (SAB) và (SCD)
b. chứng minh NP // (SBC)
c. tìm giao điểm của SC với mp(MNP)
Cho hình chóp S ABCD có đáy hình bình hành tâm O, hai điểm M,N lần lượt là trung điểm của SB,SD. Điểm P thuộc SC và không là trung điểm của SC a)tìm giao điểm Q của SA với mp(MNP) b)tìm giao điểm H của AD với mp(MNP c)tìm giao điểm G của AC với mp(MNP) d) chứng minh MQ,AB,GH đồng quy
Cho hình chóp S.ABC có G là trọng tâm tam giác ABC. Gọi M là trung điểm của SG, gọi giao điểm của mặt phẳng (P) qua M với các cạnh SA, SB, SC tại A', B', C' Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}\)
Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)
Đề toán: Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O.
a/ Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
c/ Gọi M, N lần lượt là trung điểm của SA và SB, K là một điểm nằm giữa B và C. Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK).