+, từ C dựng hbh CEBA có CE// AB => AB// ( SCE )
=> d ( AB, SC ) = d ( AB, SCE ) =d ( A, (SCE) )
+, từ A kẻ AM ⊥ CE
nối SM
kẻ AH ⊥ SM ( H \(\varepsilon\) SM )
+, \(\left\{{}\begin{matrix}CE\perp AM\\CE\perp SA\end{matrix}\right.\) => CE⊥ ( SAM ) => CE ⊥ AH
\(\left\{{}\begin{matrix}AH\perp SM\\AH\perp CE\end{matrix}\right.\)(theo cách kẻ, theo trên )
=> AH ⊥ ( SEC ) => AH = d ( A, (SEC) )
+, SAEM = \(\dfrac{1}{2}AM.CE=\dfrac{1}{2}AC.CE.sin\widehat{C}\)
(=) a.AM = a2. \(\sin\widehat{120}\)
=> AM= \(a\dfrac{\sqrt{3}}{2}\)
=> AH = \(\dfrac{SA.AM}{\sqrt{SA^2.AM^2}}\) = \(\dfrac{a.a\dfrac{\sqrt{3}}{4}}{\sqrt{a^2+a^2\dfrac{3}{16}}}\) = a\(\dfrac{\sqrt{57}}{19}\)