Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, H, K lần lượt là trung điểm AD, SA, SB. a) Tìm giao tuyến d của (SAD) và (SBC) b) Tìm giao điểm N của BC và (MHK). Tứ giác MHKN là hình gì?
Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm cảu AB, SC; E là trung điểm SA. Thiết diện hình chóp khi cắt bởi mặt phẳng ( EMN ).
Cho chình chóp S ABCD . , đáy ABCD là hình bình hành. Gọi M N, lần lượt là trọng tâm các tam giác SAB SAD , ; P là điểm thuộc cạnh AD sao cho AP=2PD.
1) Chứng minh MP song song với mặt phẳng (SBD)
2) Gọi (α) là mặt phẳng qua N song song với (SCD). Xác định thiết diện của (α)và hình chóp. Thiết diện là hình gì?
3) Gọi (β) là mặt phẳng chứa MP và song song với SA .Dựng thiết diện giữa (β) và hình chóp S ABCD . .
4) Gọi E là trung điểm cạnh CD . Xác định thiết diện của (EMN) và hình chóp S ABCD . . Gọi K là giao điểm của (EMN) và đường thẳng SA . Tính KS/KA .
2. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M và N là
trung điểm của AB và SC
a)Tìm các giao tuyến (SAC) và (SBD).
b)Tìm các giao tuyến (SAB) và (SCD).
c)Chứng minh rằng MN //(SAD)
d)Chứng minh rằng đường thẳng AN đi qua trọng tâm của tam giác SBD
e) Gọi P là trung điểm của SA. Dựng thiết diện của hình chóp với mặt
phẳng (MNP)
Cho hình chóp S.ABCD có đáy là hình thang (AD//BC,AD>BC). Gọi M,N,E lần lượt là trung điểm của AB,CD,SA .
a) Chứng minh rằng : (MEN) // (SBC)
b) Trong tam giác SAD vẽ EF // AD (F\(\in\) SD) . Chứng minh rằng F là giao điểm của mặt phẳng (MNE) với SD . Từ đó suy ra thiết diện của hình chóp khi cắt bởi mặt phẳng (MNE) là hình gì ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Gọi M, N, P lần lượt là trung điểm các đoạn thẳng SA, BC, CD gọi K là điểm bất kì nằm trên OM chứng minh KN//(SCD)