Từ (1) // CD AB // ND
(5)
Từ (1) (2 góc đối của hình bình hành) (6)
Từ (5), (6) (G-G)
Từ (1) // CD AB // ND
(5)
Từ (1) (2 góc đối của hình bình hành) (6)
Từ (5), (6) (G-G)
Cho hình bình hành ABCD, lấy điểm M tùy ý trên cạnh AB, đường thẳng DM cắt AC tại K và cắt BC tại N
a, Chứng minh: - tam giác NMB đồng dạng với tam giác NDC
- tam giác AKD đồng dạng với tam giác CKN
b, Chứng minh KD2 =KM.KN
c, Biết NB=6cm, NC=15cm, MB= 4cm. tìm tỉ số đồng dạng của: tam giác NMB và tam giác NDC. tính diện tích của hình bình hành ABCD
Cho hình thang ABCD có đáy lớn CD. Qua A vẽ đường thẳng song song với BC cắt DC tại K. Qua B vẽ đường thẳng song song với AD cắt DC tại I..BI cắt AC tại F, AK cắt BD tại E. Chứng minh rằng:
a)Tam giác AFB đồng dạng với tam giác CFI
b) AE. KD = AB. EK
c) AB2 = CD. EF
Giúp e ý c với
cho hinh chữ nhật ABCD, AB=16cm,AD=12cm.Kẻ AE vuông góc BD (E thuộc BD)
a) Chứng minh Tam giác ABC đồng dạng Tam giác EBA
b) Tính đoạn EB
c) Đường thẳng AE cắt các đường thẳng CD và BC thứ tự tại G và K.Chứng minh: AE2=EG.EK
d) Lấy điểm M trên cạnh AB,N trên cạnh BC;MN cắt BD ở I CMR: AB/BM+BC/BN=BD/BI
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
Cho tam giác vuông ABC (A=90o). Một đường thảng song song với cạnh BC căt hai cạnh AB và AC theo thứ tự tại M và N, đường thẳng đi qua N và song song với AB cắt BC tại D. Cho biết AM=6cm;An=8cm;BM=4cm.
a)Tính độ dài các đoạn thẳng Mn,NC và BC
b)Tính diện tích hình bình hành BMND
Cho hình thoi ABCD với AC=6cm,BD=8cm.O là giao điểm hai đường chéo AC và BD ,M là trung điểm DC. AM và BD cắt nhau tại I. Kẻ IK//CD (K thuộc AC)
a) Tính tỉ số IK/MC
b)CM tam giác IOK đồng dạng với tam giác DOA
c) Tính diện tích tam giác AIK
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN