Cho hình bình hành ABCD có góc A=120 độ.Đường phân giác của góc D đi qua trung điểm M của cạnh AB. a.Chứng minh AB=2AD b.Vẽ AH vuông góc với CD.Chứng minh DM=2AH.
Cho hình bình hành ABCD (AB>AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C, kẻ đường thẳng vuông góc với BD tại F cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) CM: AF//CE
c) CM: AC, EF, KI đồng quy
Cho hình bình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA', BB', DD' là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy.
Chứng minh rằng :
\(AA'=BB'+DD'\)
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc tAC tại N
c, lấy điểm D đối xứng với h điểm H qua điểm M Chứng minh ba điểm D a k thẳng hàng và chứng minh bc² = bc bình phương + ck bình phương+ 2bh x HC
Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH, gọi M là trung điểm AC.Trên tia đối của tia MH lấy D sao cho MD=MH a) Chứng minh ADHC là hình chữ nhật b) Gọi E là điểm đối xứng C qua H. Chứng minh ADHE là hình bình hành c) Vẽ EK vuông góc AB tại K. Gọi I là trung điểm AK. Chứng minh KE // IH
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
cho hình thang vuông ABCD ( góc A = góc D = 90 độ); AB =1/2 CD; kẻ DH vuông góc CB.Gọi M là trung điểm DH;N là trung điểm HC. câu a) c/m tam giác ABNM là hình bình hành
Cho hình bình hành ABCD có ac<bd. Từ A kẻ AH vuông góc với BD. Từ C kẻ CK vuông góc với BD. Gọi O là trung điểm BD
a) Chứng minh: AHCK là hình bình hành, từ đó suy ra OH=CK
b) Chứng minh: HD=BK