Cho hình bình hành ABCD. Vẽ tia Ax cắt đường chéo BD ở I, cắt tia BC ở J và cắt tia DC ở K.
a) Theo định lý Talet thì tỉ số ID/IB bằng với những tỉ số nào? Chứng minh IA2 = IJ.IK
b) Hai tỉ số AI/AJ và AI/AK bằng tỉ số nào trên đường chéo BD? Chứng minh 1/AJ + 1/AK = 1/AI
Cho hình bình hành ABCD. Vẽ tia Ax cắt đường chéo BD ở I, cắt tia BC ở J , cắt tia CD ở K.
1) Theo định lí Thalès thì tỉ số \(\frac{ID}{IB}\) bằng với những tỉ số nào? Chứng minh \(IA^2=IJ.IK\)
2) Hai tỉ số \(\frac{AI}{AJ}\)và \(\frac{AI}{AK}\)bằng tỉ số nào trên đường chéo BD? Chứng minh \(\frac{1}{AJ}+\frac{1}{AK}=\frac{1}{AI}\)
: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
cho hình bình hành abcd. từ điểm c kẻ đường thẳng cắt tia đối của tia da và tia đối của tia ba lần lượt tại E và F. trên cạnh dc lấy điểm k sao cho dk=bf. gọi giáo điểm của ak và ef là m. chứng minh em=mf
BT1: Cho tam giác ABC, trung tuyến AM.Lấy điểm N trên cạnh AB, điểm Q trên cạnh AC sao cho NQ// BC. Gọi K là giao của AM và NQ. Cmr: NK=KQ.
BT2: Cho hình bình hành ABCD, trên tia đối của tia CB lấy điểm I, AI cắt BD,
DC lần lượt ở K,G. Chứng minh:
a, CI/IB=IG/AT
b, DG/DC=DK/KB
c, AK.BI = KI.AD
d, AK2= KG.KI