Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình bình hành ABCD gọi O là giao điểm của 2 đường chéo AC và BD đường thẳng qua O không song song với AD và cắt AB tại M và CD tại M a) C/m M đối xứng với N qua O b)Chứng tỏ rằng tứ giác AMCN là hình bình hành
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.
Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm các đoạn OA, OB, OC, OD
1) Chứng minh rằng tứ giác MNPQ là hình bình hành
2) Chứng minh rằng các tứ giác ANCQ, BPDM là các hình bình hành