Cho hình bình hành ABCD có AB = 2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD.
a) Các tứ giác AEFD, AECF là hình gì ? Vì sao ?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật ?
c) Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông ?
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD
a) Tứ giác DEBF là hình gì ? Vì sao ?
b) Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm
c) Gọi giao điểm của AC với DE và BF theo thứ tứ là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E , F, G, H lần lượt là các trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác EFGH là hình gì.
b) Biết Ac = 10cm, BD = 8cm. Tính diện tích tứ giác EFGH.
c) Cần có điều kiện gì để tứ giác EFGH là hình vuông
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Cho tứ giác ABCD . Gọi M , N , P , Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA
a. Chứng minh tứ giác MNPQ là hbh
b. Hai đường chéo AC và BD thoả điều kiện gì để tứ giác MNPQ là hcn , hình thoi , hình vuông
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.