a,Vì ABCD là hình bình hành
=> góc A = C
AB = DC
AD = BC => AE = CF
Xét tam giác AEB và CFD có :
AE = CF ( cmt )
AB = DC ( cmt )
goc A = C
=> tam giác AEB = CFD ( c-g-c)
=> EB = DC ( 2 cạnh tương ứng )
=> góc ABE = CDF ( 2 goc tương ứng )
b) Ta có :
AD = BC ( gT)
=> ED = BF
mà ED // BF ( ABCD là hình bình hành )
nên tứ giác EBFD là hình bình hành
c)
Vì ABCD là hbh
=> AC cắt BD tại trung điểm của mỗi đường (1)
Lại có : EBFD là hbh
=> BD cắt È tại trung điểm của mỗi đường ( 2)
Từ (1)và ( 2) => AC , BD , EF đông quy ( đcpcm)