Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm cuả AD,BC. BM và DN cắt AC lần lượt tại E và F.
a, Tứ giác BMDN là hình gì? Vì sao?
b, Chứng minh AE = EF = FC
c, Tính diện tích tam giác DBM, biết diện tích hình bình hành là 30 cm2
Giúp em với ạ
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
Cho hình chữ nhật ABCD.Gọi M là trung điểm của AB.Kẻ MN vuông gốc với CD tại N.
a) c/m AMND là hình chữ nhật
b) O là trung điểm của MN .C/m O cũng là trung điểm của AC
c) Gọi E,N lần lượt là giao điểm của AN và CM với BD chứng minh
DE=EF=FB
Cho hình chữ Nhật ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của ĂN và DM, Q là giao điểm của BN và Cm
a) tứ giác AMIN là hình gì? Vì sao
b) chứng minh tứ giác MNPQ là hình bình hành
Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB, BD cắt AC tại O chứng minh rằng :
a, Tứ giác AECK là hình bình hành
b, ba điểm E,O,K thẳng hàng
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N∈∈AC), DM // AC. (M∈∈AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH ⊥⊥ MN, AH cắt BC tại E. CM: BE = EC
Cho hình chữ nhật ABCD(AB > AD). Gọi O là giao điểm của 2 đường chéo AC và BD. Trên cạnh AD,BC lần lượt lấy điểm M, N sao cho AM=CN a)Cm:tứ giác BMDN là hình bình hành b)cm: M và N đối xứng nhau qua O
cho hình bình hành ABCD có góc D = 60 độ , CD = 2BC . gọi E và F theo thứ tự là trung điểm của AB và CD
a) cm DEBF là hình bình hành
b) tứ giác AEFD là hình gì ? vì sao ?
c) gọi M là giao điểm của DE và AF , N là giao điểm của CE và BF . c/m EMFN là hình chữ nhật
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. P là điểm đối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao?
Bài 2: Cho hình bình hành ABCD (AB > AD). Kẻ AH, CK lần lượt vuông góc với BD tại E, F.
a) C/m AMCN là hình bình hành
b) AH kéo dài cắt CD tại N, CK kéo dài cắt AB tại M. Chứng tỏ rằng AC, BD, MN đồng quy.
c) Chứng minh M và N đối xứng qua tâm O của hình bình hành ABCD
Bài 3: Cho hình bình hành ABCD. AC cắt BD tại O.
Gọi M,N thứ tự là trung điểm của OB và OD. K là giao điểm của CN với AD. H là giao điểm của AM với BC. I là giao điểm của AN và DC. E là giao điểm của CM và AB. Chứng minh
a) AM = CN b) DI = IC
c) K và H đối xứng qua O d) E và I đối xứng qua O
Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD
a) Tứ giác DEBF là hình gì ? Vì sao ?
b) Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm
c) Gọi giao điểm của AC với DE và BF theo thứ tứ là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành