Trên hình dưới đây, các tứ giác ABCD và EFCH đều là hình bình hành. Điểm E nằm trên đường chéo AC
a) Chứng minh rằng đa giác AEHD và hình ABCFE có cùng diện tích
b) ABCFE có phải là đa giác lồi không ? Vì sao ?
Cho hình bình hành ABCD (h.183).
Từ A và C kẻ AH và CK vuông góc với đường chéo BD. Chứng minh rằng hai đa giác ABCH và ADCK có cùng diện tích ?
Cho hình bình hành ABCD. Đường phân giác của góc A và C cắt nhau đường chéo BD tại E, F.
a) Chứng minh rằng hai hình ABCFE và ADCFE có cùng diện tích.
b) Các hình đó có phải là đa giác lồi không? Vì sao?
Cho tứ giác ABCD gọi M N P Q lần lượt là trung điểm của các cạnh AB BC CD DA
A) Chứng minh tứ giác MNPQ là hình bình hành
b) tìm điều kiện hai đường chéo AC và BD của tứ giác ABCD để MNPQ là hình chữ nhật
Cho hình 125, trong đó ABCD là hình chữ nhật, E là một điểm bất kì nằm trên đường chéo AC, FG // AD và HK // AB. Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.
Cắt hai tam giác vuông bằng nhau từ một tấm bìa. Hãy ghép hai tam giác đó để tạo thành :
a) Một tam giác cân
b) Một hình chữ nhật
c) Một hình bình hành
Diện tích của các hình này có bằng nhau không ? Vì sao ?
Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c.Gọi E là trung điểm BM; F là giao điểm của AM và PN. Chứng minh:
- Tứ giác ABEF là hình thang cân;
- Tứ giác MENF là hình thoi.
d. Kẻ đường cao AH của tam giác ABC, MK // AH (K thuộc AC). Chứng minh: BK vuông góc HN.
Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.