Đặt độ dài cạnh AD là a, độ dài cạnh AB là b
Ta có: ABCD là hình bình hành nên:
\(AB=CD=b\) (hai cạnh bên)
Mà: DCF là tam giác đều nên:
\(CD=CF=DF=b\) (ba cạnh tam giác đều)
Và: \(AD=BC=a\)
\(\Rightarrow BF=BC+CF=a+b\) (1)
Và: ΔADE là tam giác đều nên:
\(AD=DE=AE=a\)
\(\Rightarrow BE=AB+AE=a+b\) (2)
\(\Rightarrow EF=DE+DF=a+b\) (3)
Từ (1) và (2) và (3)
\(\Rightarrow BE=BF=EF=a+b\)
Vậy ΔBEF là tam giác đều (đpcm)