Cho hình bình hành abcd có a khác 120 độ,vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó.1,CM tam giác EFC là tam giác đều.2,Gọi M,I,K theo thứ tự là trung điểm BD,AF,AE.Tính góc IMK
cho hình bình hành abcd(a khác 120 độ). vẽ tam giác đều abe;adf nằm ngoài hình bình hành
a) CM:tam giác efc đều
b) gọi m,i,k thứ tự là trung điểm của bd,af,ae.tính imk
Cho hình bình hành ABCD có \(\widehat{A}=\alpha>90^0\). Ở phía ngoài hình bình hành vẽ các tứ giác đều ADF, ABE
a) Tính \(\widehat{EAF}\)
b) Chứng minh rằng tam giác CEF là tam giác đều
cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) tam giác ADM=CBN b) góc ADM=NCA và IM//CN
Giúp mình với!
Cho hình bình hành ABCD (Â < B ). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành.
a) Chứng minh tam giác EFC đều
b) Gọi M,I,K theho thứ tự là trung điểm của BD, AF, AE. Tính góc IMK
Cho hình bình hành ABCD. Vẽ các tam giác đều ABE và ADE nằm ngoài hình bình hành.
a) Chứng minh rằng tam giác EFC đều
b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK.
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng :
a)Tứ giác AICK là hình bình hành.
b) AI // CK.
c) DM = MN = NB.
Bài 1. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC và AD, O là giao điểm của AC và BD. Chứng minh: a) Tứ giác AMCN là hình bình hành. b) Ba điểm M , N, O thẳng hàng.
Cho hình bình hành ABCD có AB = 2DC, E;F theo thứ tự là trung điểm của cạnh AB, CD.
a) CM: Tứ giác DBEF là hình bình hành
b) CM: Tứ giác AEFD là hình thoi
c) Gọi M là giao điểm của DE và AF, N là giao điểm của EC và BF. Tứ giác MENF là hình gì? Vì sao?
d) Hình bình hành ABCD có thêm điều kiện gì thì tứ giác MENF là hình vuông.