Cho x, y, z khác 0 thỏa mãn: \(\left\{{}\begin{matrix}x+y+z=\frac{1}{2}\\\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\end{matrix}\right.\)
Tính: \(P=\left(y^{2009}+z^{2009}\right)\left(z^{2011}+x^{2011}\right)\left(x^{2013}+y^{2013}\right)\)
Giúp hộ mik ạ!!!
Đề:
Giá trị của y thoả mãn x2 + y2 + z2 = xy + 3y + 2z - 4 với x, y, z \(\in\) Z.
Giải:
x2 + y2 + z2 = xy + 3y + 2z - 4
x2 - xy + y2 - 3y + z2 - 2z + 4 = 0
\(x^2-2\times x\times\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}-3y+3+z^2-2z+1=0\)
\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y^2}{4}-2\times\frac{y}{2}\times1+1^2\right)+\left(z-1\right)^2=0\)
\(\left(x-\frac{y}{2}\right)+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
\(\left\{\begin{matrix}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\\z-1=0\end{matrix}\right.\)
\(\frac{y}{2}=1\)
\(y=2\)
ĐS: 2
~ Nana ~
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
1, Cho x,y>0.Cmr :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
2, Tìm giá trị nhỏ nhất của biểu thức :B=\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045\)
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
a) Cho y>x>0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A=\(\frac{5x^2-x+1}{x^2}\), x≠0.
a, CMR: 9x2y2+ y2- 6xy - 2y +2≥0
b, cho ba số thuộc số âm x, y, z
thỏa mãn\(\left\{{}\begin{matrix}xyz=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< x+y+z\end{matrix}\right.\)
CMR: Có đúng trong ba số x,y, z lớn hơn 1
Cho ba số x,y,z ≠0 thỏa mãn điều kiện:
x+y+z=0, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2003}\)
Tính giá trị của biểu thức A=\(\left(x^3+y^3\right)\left(x^5+y^5\right)\left(x^7+y^7\right)\)
Cho \(\left\{{}\begin{matrix}ax+by+cz=0\\a+b+c=\frac{1}{2019}\end{matrix}\right.\) . Tính giá trị của \(\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)