- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{a}{a^,}\ne\frac{b}{b^,}\)
hay \(\frac{m}{1}\ne\frac{-1}{1}\)
=> \(m\ne-1\)
- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{a}{a^,}\ne\frac{b}{b^,}\)
hay \(\frac{m}{1}\ne\frac{-1}{1}\)
=> \(m\ne-1\)
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Trong đó \(m\in Z,m\ne-1\). Xác định m để hệ phương trình có nghiệm nguyên
tìm m ∈ Z để hệ có nghiệm duy nhất là nghiệm duy nhất là nguyên
a)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+2y=5\left(1\right)\\mx+y=4\left(2\right)\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất mà x và y trái dấu.
b) Tìm m để hệ phương trình có nghiệm duy nhất mà \(x=\left|y\right|\)
Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên
a)\(\left\{{}\begin{matrix}mx+2y=m+1\\2x+my=2m-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=3\\-mx-y=2m\end{matrix}\right.\); m là tham số
1. Xác định m để HPT có 1 nghiệm duy nhất ? Vô nghiệm ? Vô số nghiệm ?
Giải đúng mk tick cho .
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
Chứng minh rằng với mọi m hệ luôn có nghiệm duy nhất (x ; y). Tìm m sao cho P=xy+x+2y đạt giá trị lớn nhất
Cho hệ pt \(\left\{{}\begin{matrix}x+y=2\\mx-y=m\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) là những số nguyên