Giải hệ phương trình sau :
a, \(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^3-1=2y\\y^3-1=2x\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x^2+xy=3x\\2y^2+xy=3y\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)
Giải hệ
1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy-1=0\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}y\left(4x^3+1\right)=3\\y^3\left(3x-1\right)=4\end{matrix}\right.\)
giai hpt
a.\(\left\{{}\begin{matrix}x=y+4\\2x+3=0\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}2x+y=7\\3y-x=7\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}5x+y=3\\-x-\dfrac{1}{5}y=\dfrac{-3}{5}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x-5y=-18\\x-5=2y\end{matrix}\right.\)
giải hệ pt sau
a\(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) b\(\left\{{}\begin{matrix}3x_{ }-2y=11\\4x-5y=3\end{matrix}\right.\) c\(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=_{ }-31\end{matrix}\right.\) D\(\left\{{}\begin{matrix}7X+5Y=19\\3x+5y=31\end{matrix}\right.\)
e\(\left\{{}\begin{matrix}7x-5y=3\\3x+10y=62\end{matrix}\right.\) f\(\left\{{}\begin{matrix}2x+5y=11\\3x+2y=11\end{matrix}\right.\) g\(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\)
Giải hệ pt và pt sau:
a.\(\left\{{}\begin{matrix}\left(2x-3\right)\cdot\left(2y+4\right)=4x\cdot\left(y-3\right)+54\\\left(x+1\right)\cdot\left(3y-3\right)=3y\left(x+1\right)-12\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+y-1=0\\x^2+xy+3=0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x-3y=5\\x^2-y^2=40\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x+2y=36\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\) . Tìm m để hệ có nghiệm (x;y) t/m x\(^2\)-2y\(^2\)=1
f. \(\frac{t^2}{t-1}+t=\frac{2t^2+5t}{t+1}\)
g.\(\frac{x^2+2x-3}{x^2-9}+\frac{2x^2-2}{x^2-3x+2}=8\)
1)\(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2+y^2+x-2y=2\\x^2+y^2+2x+2y=11\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^3-y=1\\3x^2-3xy+y^2=1\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3-y^3=9\\\left(x-y\right)\left(x^2+y^2\right)=15\end{matrix}\right.\)
Giải các hệ phương trình sau:
\(a,\left\{{}\begin{matrix}y-2x=xy\\2x+3y=2xy\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}3x+2y=36\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
Giải hệ phương trình:
\(a,\left\{{}\begin{matrix}2x^3+x^2y+2x^2+xy+6=0\\x^2+3x+y=1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\sqrt[3]{x+2y}=4-x-y\\\sqrt[3]{x+6}+\sqrt{2y}=2\end{matrix}\right.\)