cho hình thag ABCD (AB//CD ; AB<CD) O là giao điểm của AC và BD Qua O kẻ đường thẳg //CD cắt AD và BC lần lượt ở E và F . lấy điểm M sao cho DM = EF chứng minh
a , tứ giác EFMD là hbh và CK/KA = CM / MD ( với K là giao điểm của MF và AC )
b, BF/BC = AE / AD
C, O là trung điểm của EF
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
2) Chứng minh DE = FE = FC.
Cho tam giác ABC, lấy D thuộc cạnh AB, E thuộc AC sao cho BD = CE. Gọi M, N, I, K lần luowj là trung điểm của BE, CD, DE, DC.Chứng minh DK vuông góc MN
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho AC = m. Lấy B bất kì trên AC. Tia \(Bx\perp AC\), trên tia Bx lần lượt lấy D, E sao cho BD = BA, BE = BC.
a. CMR: CD = AE và \(CD\perp AE\).
b. Gọi M, N lần lượt là trung điểm AE, CD. I là trung điểm MN. CMR: khoảng cách từ I đến AC không đổi khi B di chuyển trên AC.
cho hình vuông ABCD, điểm E thuộc cạnh BC, F thuộc tia đối của tia DC sao cho BE=DF. Qua A kẻ đường vuoong góc EF cắt CD tại K. Qua E kẻ đường thẳng song song với CD cắt AK ở I. Tứ giác FIEK là hình gì? Vì sao?
Cho hình bình hành ABCD, E là một điểm thuộc đoạn AB sao cho AE = 2BE, F là một điểm thuộc đoạn CD sao cho CD = 3DF
a, C/minh tâm O của hình bình hành ABCD là trung điểm của EF
b, Gọi M là trung điểm cuả AE . C/minh: MF // BC
c, Gọi G, H lần lượt là giao điểm của đường thẳng EF với các đường thẳng BC và AD. C/minh: HF = FE = EG
d, Gọi I là trung điểm của AG. C/minh: I, C, E thẳng hàng.
cho HBH ABCD có AB=2AD . BE vuông góc với AD ( E thuộc AD ) . Nối E với trung điểm F của CD . Kẻ FH vuông góc với BE (H thuộc BE) , FH cắt AB ở K
a, CM tứ giác CFKB và DFKA hbh
b , cm tam giác EBF cân
c , góc ADC=2 góc DÈ