Trong mặt phẳng tọa độ Oxy cho vectơ \(\overrightarrow{v}=\left(-1;2\right)\). Hai điểm \(A\left(3;5\right);B\left(-1;1\right)\) và đường thẳng d có phương trình \(x-2y+3=0\)
a) Tìm tọa độ của các điểm A', B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo \(\overrightarrow{v}\)
b) Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{v}\)
c) Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo \(\overrightarrow{v}\)
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình \(x^2+y^2-2x+4y-4=0\). Tìm ảnh của (C) qua phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-2;5\right)\)
Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{v}=\left(2;-1\right)\), điểm \(M\left(3;2\right)\). Tìm tọa độ của các điểm A sao cho :
a) \(A=T_{\overrightarrow{v}}\left(M\right)\)
b) \(M=T_{\overrightarrow{v}}\left(A\right)\)
Trong mặt phẳng Oxy cho \(\overrightarrow{v}=\left(-2;1\right)\); đường thẳng \(d\) có phương trình \(2x-3y+3=0\), đường thẳng \(d_1\) có phương trình \(2x-3y-5=0\)
a) Viết phương trình của đường thẳng \(d'\) là hình ảnh của d qua \(T_{\overrightarrow{v}}\)
b) Tìm tọa độ của \(\overrightarrow{w}\) có giá vuông góc với đường thẳng \(d\) để \(d_1\) là ảnh của \(d\) qua \(T_{\overrightarrow{w}}\)
Cho phép tịnh tiến T\(\overrightarrow{v}\) có \(\overrightarrow{v}\)=(-2;3). Tìm m để phép tịnh tiến T\(\overrightarrow{v}\) biến d: mx-(m+1)y-2=0 thành chính nó
Cho C là đồ thị hs y=sinx, C` là đồ thị hàm số y=cos x. Xác định phép tịnh tiến C thành C`
Cho \(\overrightarrow{v}\)=(-2;3), đường thẳng d: 2x-3y+3=0, đường thẳng d1: 2x-3y-5=0. Tìm toạ độ của \(\overrightarrow{\text{w}}\) có giá vuông góc với đường thẳng d để d1 là ảnh của d qua phép tịnh tiến T\(\overrightarrow{\text{w}}\)
Chứng minh rằng : \(M'=T_{\overrightarrow{v}}\left(M\right)\Leftrightarrow M=T_{-\overrightarrow{v}}\left(M'\right)\) ?
Cho đường thẳng d:3x+y-9=0. Tìm phép tịnh tiến theo véc-tơ \(\overrightarrow{v}\)có giá song song với Oy biến d thành d' đi qua điểm A(1;1)