Gọi A và B lần lượt là giao điểm của (d) với trục Ox và Oy
\(\left(2m-3\right)x-1=0\Rightarrow x=\frac{1}{2m-3}\Rightarrow A\left(\frac{1}{2m-3};0\right)\Rightarrow OA=\frac{1}{\left|2m-3\right|}\)
\(y=\left(2m-3\right).0-1=-1\Rightarrow B\left(0;-1\right)\Rightarrow OB=1\)
Gọi H là chân đường vuông góc hạ từ O xuống AB
Áp dụng hệ thức lượng trong tam giác vuông OAB:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{\left(\frac{1}{\sqrt{5}}\right)^2}=\frac{1}{\frac{1}{\left(2m-3\right)^2}}+\frac{1}{1^2}\)
\(\Leftrightarrow\left(2m-3\right)^2+1=5\Rightarrow\left(2m-3\right)^2=4\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=\frac{1}{2}\end{matrix}\right.\)