Ta có: f(1/2)=3.1/2^2+1=1,75
f(1)=3.1^2+1= 4
f(3)=3.3^2+1=38
Ta có : \(y=f\left(x\right)=3x^2+1\)
\(+\)
\(f\left(\frac{1}{2}\right)=3.\left(\frac{1}{2}\right)^2+1=\frac{7}{4}\)
\(+\)
\(f\left(1\right)=3.\left(1\right)^2+1=4\)
\(+\)
\(f\left(3\right)=3.\left(3\right)^2+1=28\)
f (1/2) = 3. (1/2)2 +1 =3.1/4 +1= 3/4 +1 =1 3/4
f (1) = 3.(1)2 +1= 3.1+1=3+1 =4
f(3) = 3.(3)2 -1= 3.9+1=27+1=28