Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=mx-m+1\) cắt đồ thị của hàm số \(y=x^3-3x^2+x+2\) tại 3 điểm A, B, C phân biệt sao cho AB=BC
A. \(m\in\left(-\infty;0\right)\cup[4;+\infty)\)
B. \(m\in R\)
C. \(m\in\left(-\dfrac{5}{4};+\infty\right)\)
D. \(m\in\left(-2;+\infty\right)\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=-mx\) cắt đồ thị của hàm số \(y=x^3-3x^2-m+2\) tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. \(m\in\left(-\infty;3\right)\)
B. \(m\in\left(-\infty;-1\right)\)
C. \(m\in\left(-\infty;+\infty\right)\)
D. \(m\in\left(1;+\infty\right)\)
Cho hàm số \(y=\frac{2mx-3}{x-1}\) và đường thẳng d: y = x + 1. Với giá trị nào của m thì d cắt đồ thị hàm số tại hai điểm phân biệt A, B đối xứng nhau qua đường thẳng d1: y = - x + 7
Cho hàm số :
\(y=f\left(x\right)=x^4-2mx^2+m^3-m^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1
b) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt
Cho hàm số :
\(y=-x^4-x^2+6\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Cho hai đồ thị hàm số là \(y=x^3+\left(\sqrt{2}+1\right)x^2-\left(\sqrt{2}-1\right)x+1\)và \(y=-\left(m+1\right)x^2+2x+m\). Tính \(m\) là số thực sao cho hai đồ thị trên tiếp xúc tại duy nhất 1 điểm.
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
\(y=\dfrac{x+2}{x-3}\)
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C)
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang
Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương
A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1
Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung
A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0
Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\) và \(x^2_1+x^2_2< 14\) ?
A. 2 B. 1 C. Vô số D. 4
Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị
A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)
Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều
A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2
Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)
A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)
Câu 1 : Tìm điều kiện m để hàm số y = \(\frac{1}{3}x^3+3x^2+mx-2\) có 2 điểm cực trị
A. m \(\ge\) 9 B. m \(\le\) 9 C. m > 9 D. m < 9
Câu 2 : Tìm điểm cực tiểu của hàm số y = \(-x^3+3x^2+9x\)
A. -5 B. 3 C. -1 D. 27
Câu 3 : Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = \(-x^3+3x^2\)
A. \(2\sqrt{5}\) B. 6 C. 2 D. 8
Câu 4 : Đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = \(x^3-12x+4\) có phương trình là :
A. y = 8x - 4 B. y = 2x - 1
C. y = -8x + 4 D. y = -2x + 1
Câu 5 : Gọi A, B là 2 điểm cực trị của đồ thị hàm số y = \(-2x^3+3x^2-2\) . Tính diện tích tam giác OAB
A. 2 B. 1 C. 3 D. 3/2
Câu 6 : Biết m = m0 thì giá trị cực đại của hàm số y = x3 - 3x + m -4 bằng 5 . Khoảng nào sau đây chứa m0 ?
A. (0;2) B. (2;4) C. (4;6) D. (6;8)