Ta có y = f(x) = 3x2 + 1. Do đó
f(\(\dfrac{1}{2}\)) = 3.\(\left(\dfrac{1}{2}\right)^2\) + 1 = \(\dfrac{3}{4}\)+ 1 = \(\dfrac{7}{4}\)
f(1) = 3.12 + 1 = 3.1 + 1 = 3 + 1 = 4
f(3) = 3.32 + 1 = 3.9 + 1 = 27 + 1 = 28.
f (1) = 3 . 12 + 1= 3 + 1 = 4
f (3) = 3 . 32 + 1 = 3 . 9 + 1 = 28
Ta có : y = f(x) = 3\(x^2+1\)
Khi đó : f\(\left(\dfrac{1}{2}\right)=3.\left(\dfrac{1}{2}\right)^2+1=\dfrac{3}{4}+1=\dfrac{7}{4}\)
\(f\left(1\right)=3.\left(1\right)^2+1=3+1=4\)
\(f\left(3\right)=3.\left(3\right)^2+1=27+1=28\)
Ta có : y = f(x) = 3x^2+1x2+1
f \left(\dfrac{1}{2}\right)(21)= 3 . \left(\dfrac{1}{2}\right)^2(21)2 + 1 = 3 . \dfrac{1}{4}41 + 1 = \dfrac{3}{4}+143+1 = \dfrac{7}{4}47
f(1)=3.(1)2+1=3+1=4
f\left(3\right)=3.\left(3\right)^2+1=27+1=28f(3)=3.(3)2+1=27+1=28