Cho hàm số \(y=\dfrac{2}{3}mx^3-x^2+m-1\) có đồ thị (C)
a) Xác định m để đồ thị (C) đi qua \(x=1\)
b) Gọi \(\left(C_1\right)\) là đồ thị của hàm số ứng với \(m=1\). Viết phương trình tiếp tuyến của \(\left(C_1\right)\) tại điểm có hoành độ \(x=1\)
c) Viết phương trình tiếp tuyến của \(\left(C_1\right)\) song song với đường thẳng có phương trình :
\(4x-y+1=0\)
Cho hàm số : \(y=-x^4-x^2+6\) (C)
a) Tính \(y',y"\)
b) Tính \(y'''\left(-1\right);y'''\left(2\right)\)
c) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Xét tính bị chặn của các dãy số với số hạng tổng quát sau :
a) \(x_n=\dfrac{5n^2}{n^2+3}\)
b) \(y_n=\left(-1\right)^n\dfrac{2n}{n+1}\sin n\)
c) \(z_n=n\cos n\pi\)
Tính giới hạn \(\lim\limits_{n\rightarrow+\infty}x_n\) :
a) \(x_n=\dfrac{\sqrt{n^2+1}+\sqrt{n}}{\sqrt[3]{n^3+n}-n}\)
b) \(x_n\left(n-\dfrac{1}{n}\right)\left(\dfrac{1-4n}{2n^2}\right)\)
Cho dãy (Un) xác định: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{\left(2u_n+1\right)^{2022}}{2022}+u_n\end{matrix}\right.\). Đặt: \(x_n=\dfrac{\left(2u_1+1\right)^{2021}}{2u_2+1}+\dfrac{\left(2u_2+1\right)^{2021}}{2u_3+1}+...+\dfrac{\left(2u_n+1\right)^{2021}}{2u_{n+1}+1}\). Tính lim \(x_n\)
Cho hàm số \(y=\sin4x\)
a) Chứng minh rằng \(\sin4\left(x+k\dfrac{\pi}{2}\right)=\sin4x\) với \(k\in Z\)
Từ đó vẽ đồ thị của các hàm số
\(y=\sin4x;\left(C_1\right)\)
\(y=\sin4x+1;\left(C_2\right)\)
b) Xác định giá trị của m để phương trình
\(\sin4x+1=m\left(1\right)\)
- Có nghiệm
- Vô nghiệm
c) Viết phương trình tiếp tuyến của \(\left(C_2\right)\) tại điểm có hoành độ \(x_0=\dfrac{\pi}{24}\)
a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
Cho hàm số y = f(x) liên tục trên R và f(0) = f(1). Chứng minh phương trình \(f\left(x+\dfrac{1}{3}\right)-f\left(x\right)=0\) luôn có nghiệm thuộc đoạn [0;1]
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)