Cho hàm số \(y=\dfrac{1}{\left(x-1\right)\left(x+3\right)}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{4}\left(\dfrac{1}{\left(x+3\right)^{2020}}+\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{4}\left(\dfrac{1}{\left(x+3\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
C. \(-\dfrac{2019!}{4}\left(\dfrac{1}{\left(x+3\right)^{2020}}+\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
D. \(-\dfrac{2019!}{4}\left(\dfrac{1}{\left(x+3\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)