a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x^2+2x+3=0\\y=-x^2+2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x+1\right)=0\\y=-x^2+2x+3\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(3;0\right);\left(-1;0\right)\right\}\)
b: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-2}{2\cdot\left(-1\right)}=1\\-\dfrac{b^2-4ac}{4a}=-\dfrac{2^2-4\cdot\left(-1\right)\cdot3}{4\cdot\left(-1\right)}=4\end{matrix}\right.\)
=>Bảng biến thiên là:
x | -∞ 1 +∞ |
y | +∞ 4 +∞ |