a) Ta có: \(f'\left( x \right) = \left( {{x^{22}}} \right)' = 22.{x^{21}}\)
b) Đạo hàm của hàm số tại điểm \({x_0} = - 1\) là: \(f'\left( { - 1} \right) = 22.{\left( { - 1} \right)^{21}} = - 22\)
a) Ta có: \(f'\left( x \right) = \left( {{x^{22}}} \right)' = 22.{x^{21}}\)
b) Đạo hàm của hàm số tại điểm \({x_0} = - 1\) là: \(f'\left( { - 1} \right) = 22.{\left( { - 1} \right)^{21}} = - 22\)
a) Tính đạo hàm của hàm số \(y = {x^2}\) tại điểm \({x_0}\) bất kì bằng định nghĩa
b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì
Tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \({x_0} = 1\) bằng định nghĩa
Tính đạo hàm của hàm số \(f\left( x \right) = {10^x}\) tại điểm \({x_0} = - 1\)
Tính đạo hàm của hàm số \(f\left( x \right)= \log x\) tại điểm \({x_0} = \frac{1}{2}\)
Tính đạo hàm của hàm số \(f\left( x \right) = \sqrt x \) tại điểm \({x_0} = 9\)
Tính đạo hàm của hàm số f(x) = sinx tại điểm \({x_0} = \frac{\pi }{2}\)
Tính đạo hàm của hàm số \(f\left( x \right) = \tan x\) tại điểm \({x_0} = - \frac{\pi }{6}\)
Tính đạo hàm của hàm số \(f\left( x \right) = \cot x\) tại điểm \({x_0} = - \frac{\pi }{3}\)
Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cos x\) tại điểm x bất kì