Bài 1: Cho parabol (P): y = 2x2.
1. Tìm giá trị của a,b sao cho đường thẳng y = ax+b tiếp xúc với (P) và đi qua A(0;-2).
2. Tìm phương trình đường thẳng tiếp xúc với (P) tại B(1;2).
3. Tìm giao điểm của (P) với đường thẳng y = 2m +1.
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 1/2x2
a) Vẽ đồ thị parabol (P).
a) Tìm a và b để đường thẳng (d): y = a.x + b đi qua điểm (0;-1) và tiếp xúc với (P).
Cho parabol (P): y = \(x^2\) và đường thẳng (d): y = 2x + m
1. Vẽ (P).
2. Tìm m để (P) tiếp xúc (d).
3.Tìm tọa độ tiếp điểm.
Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.
Bài 9: Cho hàm số (P): y = \(x^2\)
1. Vẽ (P)
2. Gọi A,B là hai điểm thuộc (P) có hoành độ lần lượt là -1 và 2. Viết phương trình đường thẳng AB
3. Viết Phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
Bài 10: Trong hệ toạ độ xOy cho Parabol (P) y = \(-\dfrac{x^2}{4}\) và đường thẳng (d): y= mx-2m-1
1. Vẽ (P)
2. Tìm m sao cho (P) và (d) tiếp xúc nhau.Tìm toạ độ tiếp điểm
3. Chứng tỏ rằng (d) luôn đi qua một điểm cố định
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
Bài 5: Cho hàm số (P): \(y=x^2\) và hàm số(d): y = x + m
1. Tìm m sao cho (P) và (d) cắt nhau tại hai điểm phân biệt A và B
2. Xác định Phương trình đường thẳng (d’) vuông góc với (d) và tiếp xúc với (P)
3. Tìm m sao cho khoảng cách giữa hai điểm A và B bằng \(3\sqrt{2}\)