Để đường thẳng \(y=2m\) cắt đồ thị \(y=f\left(x\right)\) tại 2 điểm pb
\(\Leftrightarrow2m>-3\Rightarrow m>-\frac{3}{2}\)
(Nếu đề ko có chữ phân biệt thì thêm 1 trường hợp \(m=-2\) nữa)
Để đường thẳng \(y=2m\) cắt đồ thị \(y=f\left(x\right)\) tại 2 điểm pb
\(\Leftrightarrow2m>-3\Rightarrow m>-\frac{3}{2}\)
(Nếu đề ko có chữ phân biệt thì thêm 1 trường hợp \(m=-2\) nữa)
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\in\left[0;20\right]\) để hàm số \(g\left(x\right)=\left|f^2\left(x\right)-2f\left(x\right)-m\right|\) có 9 điểm cực trị?
A. 8 B. 9 C. 10 D. 11
Giải chi tiết cho mình bài này với ạ, mình cảm ơn nhiều♥
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{\sqrt{1-x}}{x-m}\) có tiệm cận đứng .
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{5x-3}{x^2-2mx+1}\) không có tiệm cận đứng .
Tất cả giá trị của tham số mm để đồ thị hàm số (C):\(y=-2x^3+3x^2+2m-1\) cắt trục hoành tại ba điểm phân biệt là
cho hàm số y = f(x) liên tục trên R sao cho \(\max\limits_{\left[-8;\dfrac{8}{3}\right]}=5\). xét hàm số \(g\left(x\right)=2f\left(\dfrac{1}{3}x^3-x^2-3x+1\right)+m\). tìm tất cả các giá trị thực của tham số m để \(\max\limits_{\left[-2;4\right]}g\left(x\right)=-20\)
Nhờ mọi người giải những câu này giùm em với ạ. Em làm rồi nhưng không biết có đúng không ạ
1, Tìm m để đồ thị hàm số \(y=|x|^3-(2m+3)x^2+(5m^2-1)|x|+3 \) có 3 điểm cực trị
2, Cho hàm số \(y=\dfrac{1}{3}x^3-(m+1)x^2+(m-3)x+m-4\). Tìm tất cả các giá trị của m để hàm số \(y=f(|x|)\) có 5 cực trị
3, Tìm m đồ thị hàm số \(y=(m-1)|x|^3+(3-2m)x^2-(m+5)|x|-m\) có 5 điểm cực trị
cho hàm số y=(x-1)/(x+1) (C)
1,Khảo sát sự biến thiên và vẽ đồ thị hàm số
2,Tìm m để phương trình có nghiệm thuộc (0;π) : ((sinx-1)/(sinx+1))=m