\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x^3+8}\left(x\ne-2\right)\\mx+1\left(x=-2\right)\end{matrix}\right.\)
tìm m để hàm số gián đoạn tại \(x=-2\)
cho hàm số f(x) thỏa mãn: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=2\) và \(\lim\limits_{x\rightarrow1^-}f\left(x\right)=2\). tính giá trị \(\lim\limits_{x\rightarrow1}f\left(x\right)=?\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+4}-2}{x}\left(x>0\right)\\mx^2+2m+\dfrac{1}{4}\left(x\le0\right)\end{matrix}\right.\) (m là tham số). tìm m để hàm số liên tục tại x=0
tìm a để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x^2+x+1\left(x\ge1\right)\\ax+2\left(x< 1\right)\end{matrix}\right.\) liên tục tại x=1
tìm a để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+3}-2}{x-1}\left(x>1\right)\\ax+2\left(x\le1\right)\end{matrix}\right.\) liên tục tại x=1
tìm m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+3}-2}{x-1}\left(x>1\right)\\mx\left(x\le1\right)\end{matrix}\right.\) liên tục tại x=1
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt[3]{x+1}-1}{x}\left(x\ne0\right)\\2x+m+1\left(x=0\right)\end{matrix}\right.\)
tìm m để hàm số liên tục tại x=0
cho f(x) là 1 đa thức thoa man \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}=24\). tính \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{\left(x-1\right)\left(\sqrt{2f\left(x\right)+4}+6\right)}\)
hàm số \(y=\dfrac{2x-1}{\left(x+1\right)\left(x^2-3x+2\right)}\) liên tục tại điểm nào?