Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

 Cho hai số nguyên  \(a;b\)    thỏa mãn điều kiện  \(a^2+b^2\) chia hết cho 7. 
Chứng minh rằng  \(a;b\)   đều chia hết cho 7.
 P/s:  Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý, giúp đỡ em với ạ!
Em cám ơn nhiều ạ!

Nguyễn Việt Lâm
6 tháng 4 2022 lúc 1:31

Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)

Giả sử a;b tồn tại 1 số không chia hết cho 7

\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)

\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)

Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết