Ta có:
\(\widehat{AOB}+\widehat{BOC}=180^0\)
Mà \(\widehat{AOB}=2\widehat{BOC}\)
\(\Rightarrow2\widehat{BOC}+\widehat{BOC}=180^0\)
\(\Leftrightarrow3\widehat{BOC}=180^0\)
\(\Rightarrow\widehat{BOC}=\frac{180^0}{3}\)
\(\Rightarrow\widehat{BOC}=60^0\)
Vậy \(\widehat{BOC}\) bằng \(180^0\).
Ta có : \(\widehat{AOB}+\widehat{BOC}\) = \(180^o\)( vì kề bù )
Mà \(\widehat{AOB}=2.\widehat{BOC}\)
=> \(2.B\widehat{OC}+\widehat{BOC}=180^o\)
\(\Leftrightarrow3.\widehat{BOC}=180^o\)
\(\Leftrightarrow\widehat{BOC}=180^o:3\)
\(\Leftrightarrow\widehat{BOC}=60^o\)
Vậy khi đó \(\widehat{BOC}=60^o\)