cho hai đường tròn (O;R)và (O'R') cắt nhau tại A và B .VẼ cát tuyến CAD vuông góc với AB tia CB cắt (O') tại E tia BD cắt (o) tại F
chứng mình rằng
A) góc CAF= góc DAF
B) AB là tia phân giác của gó EAF
C) CA.CD= CB.CE
mình cảm ơn các bạn nhiều lắm các bạn giải chi tiết hộ mình nha
cho hai đường tròn (O;R)và (O'R') cắt nhau tại A và B .VẼ cát tuyến CAD vuông góc với AB tia CB cắt (O') tại E tia BD cắt (o) tại F chứng mình rằng
A góc CAF= góc DAF
B AB là tia phân giác của gó EAF
C CA.CD= CB.CE
mình cảm ơn các bạn nhiều lắm các bạn giải chi tiết hộ mình nha
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) . a) Chứng minh: OA vuông góc với BC tại H. b) Vẽ đường thẳng vuông góc với OB tại O cắt cạnh AC tại E. Chứng minh: ∆OAE là tam giác cân. c) Trên tia đối của tia BC lấy điểm Q. Vẽ hai tiếp tuyến QM, QN đến (O) (M, N là tiếp tuyến). Chứng minh: 3 điểm A, M, N thẳng hàng
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
cho hai đường tròn (O;R) và (O',R') tiếp xúc ngoài tại A , một góc vuông xAy thay đổi quanh A sao cho tia Ax cắt (O;R) tại B và Ay cắt (O',R') tại C. gọi M là trung điểm của BC,MO cắt AB tại D, MO' cắt AC tại E chứng minh rằng tứ giác ADME là hình chữ nhật.
Cho (O) đk BC=2R. Trên tia đối BC lấy A/ AB<R.Từ A kẻ cát tuyến ADE với (O). Đường vuông góc AB tại A cắt CD tại M. MB cắt (O) , AD tại H và K.
a) C/m ABDM nội tiếp
b) C/m EH vuông góc AC
c) Cm khi cát tuyến ADE thay đổi thì trọng tâm tam giác ACE luôn nằm trên đg tròn cố định
Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn.
b) Chứng minh rằng OM là tia phân giác của góc AOC.
c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI BH .