Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Viết Cường

Cho hai đường tròn (O; R) và (O' r) cắt nhau tại A và B (R > r). Gọi I là trung điểm của OO'. Kẻ đường thẳng vuông góc với IA tại A, đường thẳng này cắt các đường tròn (O; R) và (O' r) theo thứ tự tại C và D (khác A)

a) Chứng minh rằng AC = AD

b) Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng KB vuông góc với AB

c, Kẻ đường kính AE của đường tròn (O) và đường kính AF của (O') . Chứng minh rằng bốn điểm E,K,B,F thẳng hàng và OO' song song với È

d, Chứng minh K là trrung điểm của EF

Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 14:32

b: Gọi giao của AB và OO' là M

=>M là trung điểm của AB và OO' vuông góc với AB tại M

Xét ΔABK có AM/AB=AI/AK

nên MI//BK

=>BK vuông góc với AB

c: 

Xét (O) có

ΔABE nội tiếp

AE là đường kính

DO đó: ΔABE vuông tại B

Xet (O') có

ΔABF nội tiếp

AF là đường kính

Do đó; ΔABF vuông tại B

=>BF vuông góc với AB

góc EBF=góc EBA+góc FBA=90+90=180 độ

=>E,B,F thẳng hàng(1)

góc ABE+góc ABK=90+90=180 độ

nên E,B,K thẳng hàng(2)

Từ (1), (2) suy ra E,B,K,F thẳng hàng

 


Các câu hỏi tương tự
Nguyễn Thị Bình Yên
Xem chi tiết
quynh nhu nguyen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
minh hiếu hồ
Xem chi tiết
Đỗ Mạnh Hùng
Xem chi tiết
Toman_Symbol
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
333333333333333333
Xem chi tiết