Xét đường tròn \(\left( I \right)\) có: \(\widehat {ABD}\) là góc nội tiếp chắn nửa đường tròn.
Vậy \(\widehat {ABD} = 90^\circ \).
Xét đường tròn \(\left( O \right)\) có: \(\widehat {ABC}\) là góc nội tiếp chắn nửa đường tròn.
Vậy \(\widehat {ABC} = 90^\circ \).
Ta có: \(\widehat {ABD} + \widehat {ABC} = 90^\circ + 90^\circ \Rightarrow \widehat {BDC} = 180^\circ \).
Vậy ba điểm \(B,D,C\) thẳng hàng.
Đúng 0
Bình luận (0)