Cho hai đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow{a}=\left(2;1;3\right)\) và \(\overrightarrow{a'}=\left(3;2;-8\right)\).
a) Nhắc lại định nghĩa góc giữa hai đường thẳng d và d' trong không gian.
b) Vectơ \(\overrightarrow{b}\) = (−2; −1; −3) có phải là một vectơ chỉ phương của d không?
c) Giải thích tại sao ta lại có đẳng thức cos(d, d') = \(\left|\cos\left(\overrightarrow{a},\overrightarrow{a'}\right)\right|=\left|\cos\left(\overrightarrow{b},\overrightarrow{a}\right)\right|\).
d) Nêu cách tìm côsin của góc giữa hai đường thẳng theo côsin của góc giữa hai vectơ chỉ phương của hai đường thẳng đó.
a) Góc giữa hai đường thẳng \(d\) và \(d'\) là góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) cùng đi qua một điểm và tương ứng song song (hoặc trùng) với \(d\) và \(d'\).
b) Ta có \(\vec b = \left( { - 2; - 1; - 3} \right) = - \vec a\) nên \(\vec b\) cũng là một vectơ chỉ phương của đường thẳng \(d\).
c) Do \(\vec a\) và \(\vec a'\) lần lượt là các vectơ chỉ phương của \(d\) và \(d'\), nên ta có \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right|\).
Ta có \(\vec a\) và \(\vec b\) là hai vectơ đối nhau, nên ta có \(\left( {\vec a,\vec a'} \right)\) và \(\left( {\vec b,\vec a'} \right)\) là hai góc bù nhau. Suy ra \(\left| {\cos \left( {\vec a,\vec a'} \right)} \right| = \left| {\cos \left( {\vec b,\vec a'} \right)} \right|\).
Như vậy \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right| = \left| {\cos \left( {\vec b,\vec a'} \right)} \right|\).
d) Từ câu c, ta có côsin của góc giữa hai đường thẳng trong không gian là giá trị tuyệt đối của côsin của góc giữa hai vectơ chỉ phương của hai đường thẳng đó.