Bài 4. Khoảng cách trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hai đường thẳng chéo nhau \(a\) và \(b\). Gọi \(\left( Q \right)\) là mặt phẳng chứa \(b\) và song song với \(a\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường thẳng \(a\), vuông góc với \(\left( Q \right)\) và cắt \(b\) tại điểm \(J\). Trong \(\left( P \right)\), gọi \(c\) là đường thẳng đi qua \(J\), vuông góc với \(a\) và cắt \(a\) tại điểm \(I\).

Đường thẳng \(IJ\) có vuông góc với \(b\) không? Giải thích.

Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 0:10

Gọi (R) là mặt phẳng chứa a và (R)//(Q)

(Q)//(R)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(\left(P\right)\cap\left(R\right)=a\)

Do đó: a//a'

mà IJ vuông góc a

nên JI vuông góc a'

\(\left(P\right)\perp\left(Q\right)\)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(JI\perp a\)

Do đó: JI vuông góc (Q)

=>IJ vuông góc b

Bùi Nguyên Khải
21 tháng 8 2023 lúc 9:24

tham khảo:

Gọi (R) là mặt phẳng chứa a song song với (Q).

(P) cắt hai mặt phẳng song song tại a và a' nên a//a'

Trong mặt phẳng (P), IJ⊥a,a//a′ nên IJ⊥a′
Ta có: (P)⊥(Q), (P) cắt (Q) tại a', IJ⊥a′ nên IJ⊥(P)
Suy ra IJ⊥b
 


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết