Cho hai biểu thức A = (sqrt(x) + 2)/(sqrt(x) + 3) và B= (sqrt(x))/(sqrt(x) - 2) + 3/(sqrt(x) + 2) + x+4 4-x .voix>=0,x ne4 a) Tính giá trị của biểu thức A tại x = 25 b) Chứng minh rằng B = 5/(sqrt(x) + 2) c) Tìm tất cả các giá trị nguyên của x dễ tích AB > 1
Cho biểu thức P=(3/1 - x + 1/√x + 1): 1/√x + 1 A Nêu điều kiện xác định và rút gọn biểu thức P B tìm các giá trị của x để P = 5/4 C Tìm giá trị nhỏ nhất của biểu thức m= x + 12/√x - 1 x 1/P
(3,0 điểm) Với x > 0 x ne4 , cho hai biểu thức. A = (sqrt(x) + 10)/(sqrt(x)) * vaB = 1/(sqrt(x) + 2) - (sqrt(x))/(sqrt(x) - 2) + (2x - sqrt(x) + 2)/(x - 4) 1 ) Tính giá trị của A khi x = 9 2) Rút gọn biểu thức B 3) Tìm tất cả các giá trị của x để biểu thức P =A.B có giá trị nguyên
Cho các biểu thức A=\(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\dfrac{3}{\sqrt{x}-1}\) với x≥0, x≠1, x≠9
a) Tính giá trị của B khi x=4
b) Rút gọn biểu thức P=A-B
c) Tìm xϵN để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
Bài 1: Cho biểu thức A= \(\dfrac{x-4}{\sqrt{x}+2}\) B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) - \(\dfrac{\sqrt{x}-1}{2-\sqrt{x}}\)-\(\dfrac{9-x}{4-x}\) (x ≥ 0, x ≠ 4 )
a) Tính A khi x = \(\dfrac{1}{4}\)
b) Rút gọn B
c) Tìm các giá trị x nguyên sao cho A.B ≤ 2
(mink đag cần gấp)
ChoP=\(\left(\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)
a,Tìm tập xác định và rút gọn biểu thức P
b,Tìm để P=\(\dfrac{5}{4}\)
c,Tìm giá trị nhỏ nhất của M = \(\dfrac{x+12}{\sqrt{x}-1}\cdot\dfrac{1}{P}\)
Bài 1
A=\(\dfrac{1}{2\sqrt{3}-2}\)-\(\dfrac{1}{2\sqrt{3}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\) với x>;x≠1
a)Rút gọn biểu thức A và B
b)Hãy tìm các giá trị của x để giá trị biểu thức B bằng \(\dfrac{2}{5}\) giá trị biểu thức A
Cho biểu thức: N=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)với x ≥0; x≠1
a) Rút gọn N
b) Tìm giá trị nhỏ nhất của N
c) Tim x để biểu thức M=\(\dfrac{2\sqrt{x}}{N}\)nhận giá trị nguyên
Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.