Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Vân

Cho góc xOy nhọn, Ot là tia phân giác của góc xOy. Trên tia Ot lấy H. Qua H vẽ đường thẳng vuông góc với Ot cắt Ox tại A, Oy tại B.

a/ Chứng minh tam giác AHO = tam giác BHO.

b/ Trên tia Ax lấy C, trên tia By lấy D sao cho AC = BD. Chứng minh AD = BC.

c/ CD cắt tia Ot tại K. Chứng minh AB // CD.

Help me, please!!!!!!!

soyeon_Tiểubàng giải
15 tháng 11 2016 lúc 21:14

Ta có hình vẽ:

x O y t A B H C D K' K a) Vì Ot là phân giác của góc xOy nên \(xOt=yOt=\frac{xOy}{2}\)

Xét Δ AHO và Δ BHO có:

AOH = BOH (cmt)

OH là cạnh chung

AHO = BHO = 90o

Do đó, Δ AHO = Δ BHO (g.c.g) (đpcm)

b) Δ AHO = Δ BHO (câu a)

=> OA = OB (2 cạnh tương ứng)

Gọi K' là giao điểm của AD và BC

Xét Δ AOK' và Δ BOK' có:

OA = OB (cmt)

AOK' = BOK' ( câu a)

OK' là cạnh chung

Do đó, Δ AOK' = Δ BOK' (c.g.c)

=> AK' = BK' (2 cạnh tương ứng); OAK' = OBK' (2 góc tương ứng)

Lại có: OAK' + K'AC = 180o (kề bù) (1)

OBK' + K'BD = 180o (kề bù) (2)

Từ (1) và (2) => K'AC = K'BD

Xét Δ K'AC và Δ K'BD có:

AC = BD (gt)

K'AC = K'BD (cmt)

AK' = BK' (cmt)

Do đó, Δ K'AC = Δ K'BD (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Mà AK' = BK' (cmt) => AK' + K'D = BK' + K'C

=> AD = BC (đpcm)

c) Đầu tiên ta đi chứng minh 3 điểm O, H, K' thẳng hàng (bn tự chứng minh)

Δ AOK' = BOK' (câu b)

=> AK'O = BK'O (2 góc tương ứng) (*)

Δ K'AC = Δ K'BD (câu b)

=> AK'C = BK'D (2 góc tương ứng) (**)

Ta có: AK'O + AK'C + CK'K = 180o

BK'O + BK'D + DK'K = 180o

Kết hợp với (*) và (**) => CK'K = DK'K

Δ OK'C và Δ OK'D có:

OK' là cạnh chung

COK' = DOK' (câu a)

OC = OD (vì OA = OB; AC = BD)

Do đó, Δ OK'C = Δ OK'D (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Xét Δ CK'K và Δ DK'K có:

CK' = DK' (cmt)

CK'K = DK'K (cmt)

K'K là cạnh chung

Do đó, Δ CK'K = Δ DK'K (c.g.c)

=> CKK' = DKK' (2 góc tương ứng)

Mà CKK' + DKK' = 180o (kề bù) nên CKK' = DKK' = 90o

=> \(KK'\perp CD\)

\(KK'\perp AB\) do \(Ot\perp AB\) nên AB // CD (đpcm)

Ngu Văn Người
17 tháng 11 2016 lúc 20:19

thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm


Các câu hỏi tương tự
nguyễn khánh ngọc
Xem chi tiết
thân thị huyền
Xem chi tiết
Rau
Xem chi tiết
Phương Thảo
Xem chi tiết
Alayna
Xem chi tiết
Đặng Ngọc Đăng Thy
Xem chi tiết
Nga Nguyen thi
Xem chi tiết
Phương Thảo
Xem chi tiết
super saiyan
Xem chi tiết