a,Xét \(\Delta\)OAH và \(\Delta\)OBH có:
OA=OB
góc AOH=góc BOH
OH chung
\(\Rightarrow\)\(\Delta\)OAH=\(\Delta\)OBH(c.g.c)
b,Vì \(\Delta\)OAH=\(\Delta\)OBH\(\Rightarrow\)góc AHO=gócBHO(2 góc tương ứng)\(\Rightarrow\)HOlà tia phân giác của góc AHB
a) Xét ΔOAH và ΔOBH có
OA=OB(gt)
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
OH chung
Do đó: ΔOAH=ΔOBH(c-g-c)
b) Ta có: ΔOAH=ΔOBH(cmt)
nên \(\widehat{AHO}=\widehat{BHO}\)(hai góc tương ứng)
mà tia HO nằm giữa hai tia HA,HB
nên HO là tia phân giác của \(\widehat{AHB}\)(đpcm)