Xét tam giác OBC và tam giác OAC có:
OC: cạnh chung
OB = OA (vì cùng nằm trên 1 cung tròn tâm O)
BC = AC (vì cung tròn tâm A = cung tròn tâm B)
Vậy tam giác OBC = tam giác OAC (c.c.c)
=> góc COB = góc COA (2 góc tương ứng)
=> OC là phân giác của góc xOy (đpcm)
Xét \(\Delta OAC\) và \(\Delta OBC\) có:
OA=OB (vì cùng nằm trên cung tròn tâm O)
AC=BC (vì C là giao điểm của cung tròn tâm A và cung tròn tâm B)
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\) (c.c.c)
\(\Rightarrow\widehat{AOC}=\widehat{BOC}\) (hai góc tương ứng) (1)
Vì điểm C nằm trong \(\widehat{xOy}\) nên tia OC nằm giữa 2 tia Ox và Oy (2)
Từ (1) và (2) suy ra tia OC là tia phân giác của \(\widehat{xOy}\) (đpcm)